
Modeling the Large-Strain Constitutive Behavior of
Polycarbonate under Isothermal and Anisothermal
Conditions

J. Sweeney, P. Caton-Rose, P. D. Coates

IRC in Polymer Science and Technology, School of Engineering, Design and Technology, University of Bradford,
Bradford BD7 1DP, United Kingdom

Received 8 March 2004; accepted 4 October 2004
DOI 10.1002/app.21681
Published online in Wiley InterScience (www.interscience.wiley.com).

ABSTRACT: The tensile behavior of polycarbonate was
studied at large strains below the glass-transition tempera-
ture. Experiments were carried out at a series of constant
temperatures and also under conditions of falling tempera-
tures. The specimens necked with a natural draw ratio of
approximately 2, and the study was mainly focused on the
necked material. Isothermal experiments revealed an elastic
mechanism that initiated beyond the natural draw ratio. A
model consisting of an Eyring process and two Gaussian
elastic mechanisms was found to be applicable to both the

isothermal and anisothermal stress-relaxation and stress–
strain results. The same model also produced reasonable
estimates of the stresses generated during the necking pro-
cess. In addition, a simple relationship between the isother-
mal and anisothermal stress relaxation was demonstrated.
© 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2105–2116, 2005
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INTRODUCTION

There are many key polymer processes in which large
stretches are imposed in the solid phase. Generally,
they are complex and include steps under both solid
and melt conditions. Increasingly, researchers are ap-
plying mathematical modeling to specify the process
conditions associated with desirable product dimen-
sions or properties. At the heart of any such model is
a constitutive equation that must describe the material
behavior at an appropriate level; its nature will be
governed in part by the characteristics of the material
and in part by what aspects of the product are to be
predicted.

Solid-phase deformation processes normally pro-
duce oriented polymers with enhanced mechanical
properties. There is clearly interest in the level of
orientation and the associated improvements in the
elastic modulus and other characteristics of the final
cooled product. Typically, a process will involve
stretching at a high temperature and then cooling at
an approximately constant strain. For predicting the
dimensions of a stretched product, modeling under
the assumption of isothermal conditions can prove
adequate.1 However, the prediction of the mechanical
properties of the final product requires a more sophis-

ticated approach. A possible strategy is to create an
integrated model that includes solid-phase processing,
subsequent cooling, and finally mechanical testing
that defines the properties of interest. At the heart of
such a model is the requirement for a material consti-
tutive equation that functions under conditions of
varying temperatures. The development of such an
anisothermal constitutive equation was the motivation
for this study.

Polycarbonate, stretched uniaxially at elevated tem-
peratures below the glass transition, is the focus of our
studies. The material is nonlinear and viscoelastic and
includes necking and yieldlike effects. We have stud-
ied the stress-relaxation and stress–strain behaviors
both isothermally and under conditions of controlled
cooling. On the basis of the observations, we have
constructed a constitutive equation, involving an Ey-
ring process and an elastic network, that models both
the isothermal and anisothermal behaviors over a
wide range of strain rates.

BACKGROUND

Anisothermal mechanical behavior

There have been a few studies of the mechanical be-
havior of polymers at various temperatures. Lai and
Findley2 studied the nonlinear creep behavior of poly-
urethane under conditions of continuously varying
temperatures. They adopted a mathematical approach
to model their results, and they used superposition
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integral techniques. More recently, Buckley3 made a
theoretical study of the linear, viscoelastic case with
particular reference to the form of the temperature
dependence. He produced a useful intuitive model of
a parallel arrangement of spring-switch elements, each
of which is elastic but only becomes active at a critical
temperature. Upon cooling, the modulus of the mate-
rial increases as more springs become active, but the
effect of the increase in the modulus does not apply to
strains imposed previously at a higher temperature.
Drozdov4 devised a model of adaptive links for the
anisothermal case. This was also confined to linear
viscoelastic materials, but the basic approach was con-
sidered to be extendable to the nonlinear case.

Studies of polycarbonate

As is well known,5 the tensile drawing behavior of
polycarbonate depends markedly on whether the tem-
perature is above or below the glass transition. Above
the glass transition, it extends homogeneously,
whereas at lower temperatures, necking occurs. For
this reason, processing in practice is normally done
above the glass-transition temperature. However, its
behavior at lower temperatures is of particular inter-
est, and both the necking6,7 and constitutive behaviors
have been studied.7–10 The material exhibits yieldlike
behavior, with the yield stress dependent on the strain
rate. A physically based mechanism that incorporates
these effects is a desirable feature of a constitutive
model. Thus, many workers11–13 have made use of the
Eyring process14 for this purpose. An alternative
mechanism is that of Argon,15 and it has been incor-
porated into constitutive models developed by Boyce
and coworkers7,8,16 and by Wu and van der Giessen.17

The latter researchers developed fully three-dimen-
sional constitutive equations that combine the yield
mechanism with large-deformation elastic models of
the polymer network. Such models, when imple-
mented within finite element analyses, have the po-
tential to predict general deformations, including the
evolution of necks in tensile specimens.7,8

Proposed approach

We are interested in the general principles of time-
dependent and yieldlike behavior and how such prin-
ciples can be extended from the isothermal case to the
anisothermal case. This study at this stage is confined
to one-dimensional behavior. We make use of the
Eyring model together with a rubber elastic network;
the combination of large elastic deformation and plas-
ticity has a number of precedents.7,8,16,17 However, the
one-dimensional nature of our study precludes the
use of sophisticated elastic networks, which require
multiaxial experiments for the full definition of the
material parameters. We have used an approach sim-

ilar to that first used by Haward and Thackray,18

combining an Eyring mechanism with a Gaussian net-
work, to produce a constitutive model that can be
naturally generalized to anisothermal conditions. We
also show that, in the case of stress relaxation, a simple
rule can be used to derive the anisothermal curve
obtained during cooling from isothermal curves cov-
ering the relevant temperature range.

EXPERIMENTAL

The material was Bayer (Leverkusen, Germany) Mac-
rolon polycarbonate, and it was obtained in a com-
mercial sheet form 3 mm thick. It had a weight-aver-
age molecular weight of 35,000–37,000 and a glass-
transition temperature of 148°C.19 Plane tensile
specimens, with a gauge length of 20 mm and a cross
section of 10 � 3 mm2, were cut from the sheet. Our
area of detailed study was a set of experiments at
constant temperatures of 110, 120, and 130°C and at
temperatures varying within this range. Other tests at
higher temperatures, some above the glass transition,
were performed for comparison. For all the tests re-
ported here, we used an Instron testing machine in
conjunction with an environmental chamber. The
specimens were illuminated and viewed through a
window in the environmental chamber, and this en-
abled digital images to be captured for the purpose of
strain measurements. For this purpose, square meshes
with a cell size of 2 mm were silk-screen-printed onto
the specimen surfaces. Images were captured at inter-
vals of 2 s.

All the experiments were begun by the rapid (1.67
mm s�1) stretching of the specimens at a constant
crosshead speed. The deformation ceased to be uni-
form at a small strain, at which point shear banding
started, usually at one end of the gauge length. The
band, initially at 45° to the specimen axis, rapidly
evolved into an approximately symmetric neck. The
neck propagated until the whole gauge length con-
sisted of necked material, in an approximately uni-
form state of strain. This process was complete after a
specimen extension of 20 mm, when the extension
ratio in the gauge length was on average 2.08. A
further extension of the specimen of 8 mm was possi-
ble before fracture, corresponding to an extension ra-
tio of 2.15 on average. This gave us the opportunity for
experiments on uniformly deformed material within a
narrow range of strain. In addition, we could capture
by video imaging the nonuniform strain field during
neck development and derive strains with a develop-
ment of the method of Haynes and Coates.20 In Figure
1, we show a specimen in its undeformed, necking,
and fully necked states.
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Isothermal experiments

We examined the development of the temperature
field within the specimen by placing a thermocouple
into a 1-mm-diameter axial hole in the gauge length. A
15-min period was found to be sufficient for the at-
tainment of steady conditions. Once steady thermal
conditions were attained, the specimen was strained
rapidly to the approximately uniform state as de-
scribed previously. After this stage, there were two
possibilities: either the testing machine was stopped
for stress relaxation or deformation was continued at a
different rate for a stress–strain experiment. We per-
formed both kinds of experiments at 110, 120, and
130°C.

Stress relaxations were at extension ratios of 2.08 or
2.15. The lower strain was the smallest possible that
was consistent with an essentially uniform state after
necking, whereas the larger strain was the highest
attainable before fracture. Given that the motivation of
our study was the modeling of the stresses and strains
in a stretched, cooling product, this range adequately
covered the expected changes in strain.

We made a detailed study of the stress–strain be-
havior at 130°C. After the initial fast stretching to a
uniform state of tensile strain at an extension ratio (�)
of 2.08 (extension � 20 mm), further stretching was
performed at speeds varying from 6 � 10�4 to 2
� 10�2 mm s�1. Strain rates for the specimen gauge
lengths were obtained by image capture, and we
found that they were essentially constant throughout
the experiments (despite deformation outside the
gauge area of the specimens) in the range of 5.0 � 10�6

to 1.7 � 10�4 s�1.

Cooling experiments

During the isothermal experiments, steady tempera-
ture conditions were commonly achieved by the air
temperature being kept constant for sufficient time,
after which it was is assumed that the specimen and
the associated loading members were no longer sub-
ject to thermal expansion. For the anisothermal exper-
iments, steady temperature conditions were not
achieved, and we had to make allowances for thermal
deformation, most of which occurred in the metal
loading train components.

To perform an experiment under conditions of cool-
ing, we followed the following sequence of events.
From room temperature, the specimen and apparatus
were heated at a constant rate up to a set temperature,
which was then kept constant. During this period, free
thermal expansion was allowed. At the end of the
period, steady conditions had been reached, and the
specimen was stretched, through a necking state to an
approximately uniform state of strain, as described
previously. There followed a regimen of cooling at a

Figure 1 Tensile specimen at 130° in (a) undeformed, (b)
partly necked, and (c) fully necked states.
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controlled rate, during which time the specimen strain
was kept constant or increased at a constant rate. To
implement this last stage, we had to know the thermal
deformation of the specimen and load train. This was
then added to the desired mechanical deformation
history, and the sum was programmed as the testing
machine’s displacement history.

To measure the thermal deformation for a particular
experiment, we performed a separate experiment with
the same temperature history while using the testing
machine’s load control to maintain effectively zero
force. The machine motion was monitored and stored
as a series of constant speed ramps. This enabled an
appropriate series of speed ramps to be programmed
for the stretching experiment.

As in the isothermal cases, both stress-relaxation
and stress–strain experiments were performed. The
stress relaxations were at extensions of 20 mm, and
cooling was performed from 130 to 110°C at either 2.5
� 10�2 or 1.167 �10�2°C s�1. In the stress–strain ex-
periments, we used the same temperature regimen,
with the extension increasing during cooling from 20
to 28 mm. The temperature field within the specimen
was examined, as in the isothermal case, with a ther-
mocouple embedded in the gauge length. During

cooling, the air temperature and the internal specimen
temperature differed by 0.8°C on average.

RESULTS AND MODELING: ISOTHERMAL
CONDITIONS

Stress relaxation

The stress-relaxation results for the extension ratio of
2.08 are shown for 110, 120, and 130°C in Figure 2. The
zero time was taken as the completion of the initial
straining. The highest temperature experiment had a
relatively long duration to supply necessary data for
the anisothermal modeling (which is discussed later).
The curves fit very well the Guiu–Pratt expression21

derived from a model consisting of an Eyring process
acting in series with an elastic element. The expression
for the stress at time t [�(t)] is given by

��t� � ��0� � Aln�1 � t/c� (1)

where A and c are constants. On average, the experi-
mental and modeled points differ by 1.4%. Equation
(1) thus gives a useful representation of the curves and
can be used for computational purposes.

A similar set of results for the extension ratio of 2.15
is shown in Figure 3. Equation (1) again gives a useful
model, with an average error of 1.3%. The values of A
and c are shown in Table I.

Stress–strain behavior

The results are shown in Figure 4 in the form of
stress–extension curves at 130°C. After the stress drop
accompanying the change to a lower rate at a 20-mm
extension, the stresses rose, settling down to a con-
stant rate of increase with the extension. The slopes for
the linear parts of the curves do not differ systemati-
cally.

Figure 2 Constant-temperature stress relaxation at �
� 2.08.

Figure 3 Constant-temperature stress relaxation at � � 2.15.
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Initial loading

In all the experiments, the specimen went through a
stage of nonuniform deformation until the gauge was
fully necked. The initial shear band evolved rapidly
into an approximately symmetric neck. At the center
of this neck, the strain conditions were essentially
uniaxial, and the strains there were measured with
image analysis. There were no detectable differences
between the strain fields as the temperature varied in
the range of 110–130°C. The strain rate as a function of
the specimen extension was obtained by differentia-
tion of the strain history and subsequent smoothing
and is shown in Figure 5. The short time interval
corresponding to shear banding, which was complete
within the first 2 s (1.2-mm extension), was neglected.
The maximum was characteristic of neck develop-
ment, as was the extension at an essentially zero strain
rate corresponding to steady-state neck propagation.
After a 20-mm extension, the gauge length was fully
necked, and the extension thereafter was at a constant
strain rate.

Modeling

Here we present a unified model of the stress-relax-
ation and stress–strain behavior. The quality of the
Guiu–Pratt fits to the stress-relaxation curves suggests
the relevance of the Eyring process. The Guiu–Pratt
model is of a linear elastic spring in series with an
Eyring dashpot. For this purpose, the Eyring process
can be represented by the equation linking the plastic
strain rate (ėp) to the stress (�):

ėp � �sinh�V�� (2)

� is a constant at a constant temperature, and V is
related to the activation volume (v) by V � v/kT,
where k is Boltzmann’s constant and T is the absolute
temperature. The spring of modulus E is strained by
an amount ee, and this results in a stress given by �
� Eee and a total system strain given by e � ep � ee,
where ep is the plastic strain. Guiu and Pratt21 as-
sumed the argument V� to be large and replaced the
hyperbolic sine function in eq. (2) with an exponential.
For stress relaxation, when the total strain rate is ė � 0,
the system can then be solved to give eq. (1). The
constants in eq. (1) can be identified as follows:

A �
1
V (3)

c �
1

�EV exp� � V��0�� (4)

The results presented in Figure 4, in which the
nominal stress (�n) increase linearly with extension,
suggest the existence of an elastic mechanism when
the material is stretched in its necked state. This fol-
lows from the experimental observation that, during
slow stretching at extensions greater than 20 mm cor-
responding to the fully necked state, the strain rates
are essentially constant, and at different testing
speeds, the same strains are achieved at the same
extension. The Gaussian model is the simplest theory
that gives rise to the observed behavior at large defor-

Figure 4 Experimental stress–extension curves. The inset
lists the strain rates (10�6 s�1) applied after 20 mm. Figure 5 Strain rate history of the initial loading.

TABLE I
Guiu–Pratt Parameters

�

110°C 120°C 130°C

�(0)(MPa) A(MPa) c(s) �(0)(MPa) A(MPa) c(s) �(0)(MPa) A(MPa) c(s)

2.08 62.1 2.07 9.74 � 10�4 53.9 2.03 1.33 � 10�3 44.2 2.35 6.45 � 10�3

2.15 76.2 2.39 7.81 � 10�4 67.3 2.47 8.71 � 10�4 55.2 2.88 8.31 � 10�3
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mations. In uniaxial extension with �, the true stress
(�) is given by

� � G��2 � ��1� (5)

This corresponds to �n (assuming incompressibil-
ity):

�n � G�� � ��2� (6)

where G is a material constant. For sufficiently large
values of �, the final term becomes negligible, and �n

varies essentially linearly with �.
These considerations lead us to construct a model,

as illustrated in Figure 6. The upper arm consists of a
Gaussian spring in series with an Eyring dashpot and
gives both a Guiu–Pratt response under relaxation and
rate-dependent yield behavior. This is in parallel with
another Gaussian model, motivated by the elastic re-
sponses illustrated in Figure 4. For a constant applied
rate of strain, the stress in the upper arm will reach a
maximum level, depending on the strain rate, and
then stay constant. Meanwhile, the stress in the lower
arm will rise continuously to give a total �n value that
rises as an essentially linear function of �, as governed
by eq. (6).

However, on examining the experimental data, we
find that the quantitative application of the model is
problematic. For the linear parts of the graphs in Fig-

ure 4, the slopes are on average given by ��n/��
� 67.4 MPa. Using the derivative of eq. (6) with a
value of � � 2.1, corresponding to the applied strain,
then gives a value of G 	 61 MPa. For the same strain,
eq. (6) now gives a value of �n � 114 MPa, far in excess
of the total observed �n value. �n is too low for the
observed gradient, and so the extrapolated extension
ratio corresponding to zero stress is around 2 rather
than 0.

We have modeled this effect by assuming that the
Gaussian network in the upper arm of the model only
becomes operative when the material is in the fully
necked state, corresponding to the extension ratio �0.
The true stress for this elastic component (�e) is then
given by the adaptation of eq. (5):

�e � � Ge�� �

�0
� 2

� � �

�0
��1� � � �0

0 � 	 �0

(7)

where Ge characterizes the upper network.
As we will show, the value �0 � 2.09 fits the obser-

vations well. Therefore, the stress-relaxation experi-
ments at the lower extension ratio of 2.08 can be
related to the parameters characterizing the network–
dashpot pair in the upper arm of Figure 5. The stress
in this viscoelastic system (�v) is related to the exten-
sion ratio in the upper Gaussian spring (�g) by

�v � Gv��g
2 � �g

�1� (8)

where Gv characterizes the lower network.
The same stress is also related to the strain rate in

the Eyring process (ėp) by the relation of eq. (2), which
can be rewritten as follows:

�v �
1
V ln�ėp

�
� ��ėp

�
�2

� 1� (9)

Figure 7 Modeling stress relaxation at � � 2.08.

Figure 6 Constitutive model.
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For an extension ratio of the Eyring process (�p), the

true strain rate is given by ėp �
�̇p

�p
. The extension

ratios in the two mechanisms are related multiplica-
tively to the total extension ratio (�)

� � �g�p (10)

with corresponding additive true strain rates.
The total stress (�) is then given by

� � �e � �v (11)

The stress in the lower arm is calculated numeri-
cally. The time is increased incrementally, and the
strains in the two elements are varied, under the con-
straint of eq. (11), to make �v, as calculated according
to eqs. (8) and (9), sufficiently close, as defined by a
predetermined convergence criterion. Equations (11)
and (7) are then used to find the total stress.

Our first task is to model the stress-relaxation
curves. The parameters for the Guiu–Pratt fits of Table
I are related to the model parameters via eqs. (3) and
(4), but it should be noted that eq. (1) is derived with
the exponential approximation to the hyperbolic sine
function, whereas our model uses the full function.

The Table I values of A do, however, correspond quite
closely to the values of V used in the model. The
stress-relaxation curves do not provide sufficient in-
formation to provide separate values for all the model
parameters, but eq. (4) (with E � 3Gv at small strains)
provides guidance for the trial-and-error process used
to evaluate Gv and �. The model results have been
calculated with a time increment of 0.25 s. Initial strain
rate histories are as given in Figure 5. The parameters
for modeling the stress relaxations at � � 2.08 (Gv, V,
and �) are included in Table II, and the modeled and
observed results are shown in Figure 7. The fit is
particularly good at 130°C and, typically of the other
temperatures, is 1.2% on average at 110°C. The stress
relaxations at � � 2.15 are modeled with the same
parameters, but at this higher strain the parallel net-
work characterized by Ge contributes to the stress.
Thus, according to the model, at a given temperature,
the stress at the higher strain exceeds the stress at the
lower strain by a constant. The observed and modeled
curves at the higher strain are shown in Figure 8. The
prediction errors are similar at 110 and 130°C, being
typically around 8%. The value of Ge is that obtained
from the fitting to the stress–strain curves, as dis-
cussed next.

For the stress–strain experiments, the strain rate
history, used as input for the model, consists of that of
Figure 5, up to 20-mm extension, followed by the
appropriate constant rate. The value of Ge is obtained
by the matching of the slopes of the linear parts of the
�n–extension predictions with the average of the cor-
responding slopes in the graphs shown in Figure 4.
Figure 9 shows the model predictions to be compared
with Figure 4. The predicted curves are simpler than
the observations because they lack the initially high
slopes occurring as the stress increases after 20-mm

TABLE II
Model Parameters

110°C 120°C 130°C

Gv (MPa) 2000 2000 2000
V (MPa�1) 0.46 0.49 0.42
� (s�1) 1.97 � 10�13 1.53 � 10�12 8.49 � 10�10

Ge (MPa) 133 133 133
�0 2.09 2.09 2.09

Figure 8 Modeling stress relaxation at � � 2.15.
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extension. Therefore, as a result of Ge being chosen to
give the correct slopes, the predictions of the values
are low (by 12% on average for the stress values at
28-mm extension).

Although the values of the parameters have been
obtained with reference to stress relaxation and slow
stress–strain experiments, it is interesting to examine
how the model, as presently constituted, responds to
the fast strain inputs associated with the initial load-
ing. The strain rate history of Figure 5 is used in the
model at the three temperatures, and the stress pre-
dictions are compared with observations in Figure 10.
The predicted stresses are of the correct order and
show characteristic peaks typical of the Eyring yield
event. The model stresses are not accurate in detail, as
they are based on strain rate histories that are them-
selves not known in detail, given the 2-s image capture
interval.

We would not expect a model as simple as that
proposed here to represent well all details of the ma-
terial behavior. The quality of the modeling, as illus-
trated in Figures 7–10, suggests, however, that it may
be a useful tool. We shall show in the following sec-
tions that it can be generalized usefully to explore the
principles governing anisothermal material behavior.

RESULTS AND MODELING: ANISOTHERMAL
CONDITIONS

Stress relaxation

Before applying the theory developed so far, we ex-
amine a simple relationship between isothermal and
anisothermal stress relaxation. We postulate that, for
stress relaxation in which the temperature changes
continuously, the rate of stress decay is the same as
that which would apply under isothermal conditions
for the same temperature, strain, and time after load-
ing. At a given strain, with the stress in relaxation at a
constant temperature T(t) at time t after loading de-
noted by �i(t,T), the stress in the anisothermal stress
relaxation at the same strain (�a) is then given by

�a�t,T�t�� � �i�0,T�0�� ��
0

t ��i�
,T�
��

�

d
 (12)

where 
 is the instantaneous time and the strain has
been applied at zero. For convenience, we have used
eq. (1) to approximate the stress-relaxation curves
when implementing this model. The integrand in eq.
(12) is then simply {A[T(
)]}/{c[T(
)] � 
}. The results
have been calculated for stress relaxation at the exten-
sion ratio of 2.08 as the specimen cools from 130 to
110°C. The integrals have been calculated numerically
(numerical algorithms group subroutine D01AHF),
with the values of A and c given in Table I, with values
at intermediate temperatures derived with linear in-
terpolation. The predictions are compared with the
observations in Figure 11(a,b) for the cooling rates of
2.5 � 10�2 and 1.167 �10�2°C s�1. The observed and
model curves are acceptably close. Over the tempera-
ture range considered, the rate of stress decay does not

Figure 10 Initial material response at (a) 110, (b) 120, and
(c) 130°C.

Figure 9 Model stress–extension curves. The inset lists the
strain rates (10�6 s�1) applied after a 20-mm extension.
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vary greatly as a function of temperature, and so there
is no scope for exploring the applicability of time–
temperature superposition: stress-relaxation curves at
different temperatures essentially differ by a constant.

The model of Figure 6 has been generalized to
anisothermal conditions by the introduction of tem-
perature dependence into the parameters of Table II. V
and � are assumed to depend only on the current
temperature. Experiments similar to those of Figure 4
but at lower temperatures have not revealed any sig-
nificant change in Ge; the material certainly becomes
stiffer upon cooling, but this is modeled by the tem-
perature dependence of the lower arm of the model in
Figure 6. The same stress-relaxation experiments de-
scribed previously, at an extension ratio of 2.08 for the
two cooling rates, were modeled by the application of
a strain rate history, as defined in Figure 5, for the first
12 s, followed by a zero strain rate. The values of V
and � for temperatures lying between the measure-
ment temperatures were obtained by interpolation.
Linear interpolation is adequate for V but is clearly
unjustifiable for �, which varies much more between
120 and 130°C than between 110 and 120°C. The val-
ues used in the calculations were obtained by linear
least-squares fitting of the logarithm of �. The results
are compared with observations in Figure 12(a,b) for
the cooling rates of 2.5 � 10�2 and 1.167 �10�2°C s�1.
The fits to the observations are clearly less good than

those of Figure 11, in which the anisothermal stress
relaxation is derived from the isothermal stress relax-
ation.

Stress–strain behavior

Three cooling rates have been applied: the same two
used for stress relaxation and the slowest rate avail-
able from the control system. Constant rates for both
the temperature change and strain were applied, with
the temperature falling from 130 to 110°C while the
extension ratio was increased from 2.08 to 2.15. The
strain rates (d�/dt) were 4.08 � 10�5, 8.75 � 10�5 s�1,
and 5.86 � 10�6 s�1, corresponding to cooling rates of
1.167 �10�2, 2.5 � 10�2°C s�1, and 1.67 � 10�3°C s�1,
respectively. The model parameters and interpolation
methods were the same as those used for stress relax-
ation. The results are shown in Figure 13. The pre-
dicted stresses are significantly lower than the obser-
vations, and this shows a similar quality of prediction
at all rates.

DISCUSSION

Under isothermal conditions, there is consistency be-
tween the Guiu–Pratt fitting of the stress-relaxation

Figure 11 Stress relaxation modeled with eq. (12) for cool-
ing at (a) 2.5 � 10�2 and (b) 1.167 �10�2°C s�1.

Figure 12 Stress relaxation modeled with the model of
Figure 6 for cooling at 2.5 � 10�2 °Cs�1. Average prediction
error 11%. (b) Stress relaxation modelled using model of
Figure 6 for cooling at 1.167 � 10�2 °Cs�1
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curves and the Eyring parameters in the constitutive
model. The constitutive model generally performs
well. Its most unusual feature is the parallel Gaussian
network characterized by Ge, which only becomes ac-
tive just beyond the material’s natural draw ratio. We
are led to the inclusion of this mechanism by (1) the
linear increase in �n with the extension ratio upon the
stretching of the necked material, which is highly sug-
gestive of a Gaussian network, and (2) the gradient of
this stress increase being such that, upon extrapolation
back to zero stress, the corresponding strain value is
finite.

The work of Zhou et al.9 is relevant to the discussion
of the physical origin of this component. They postu-
lated that, upon yielding, polycarbonate undergoes a
transition into a rubbery state and returns to the glassy
state upon unloading. The temperature measurements
of the developing neck support this concept, a stress-
induced mesostate. Also of relevance is the interpre-
tation of Nanzai13 and Nanzai et al.22 that solid poly-
carbonate is transformed into meltlike structures dur-
ing yielding. If our specimens indeed enter such a
rubber state upon yielding, the question arises of the
state of the postyield necked material at and beyond
the natural draw ratio. We have explored the state of
matter represented by the parallel network in our
model by investigating the number of crosslinks (N)
that correspond to the parameter Ge, given by Ge �
NkBT, where kB is Boltzmann’s constant. The value of
N is thus found to correspond to approximately eight
links per repeat unit. Clearly, this does not relate to the
physics of a freely jointed molecular chain, and any
physical justification for the use of the Gaussian the-
ory disappears (although we retain the numerical for-
mulation as an appropriate representation of the lin-
ear process). Moreover, this finding implies a degree
of constraint incompatible with the rubbery state.

This suggests that, after yielding and necking, the
material reverts to a glassy state. The formation of the
glassy state was considered by Edwards and Vilgis,23

who envisaged that, as rubber transforms into glass,
molecular chains become increasingly constrained at
pinch points along their lengths. This leads to the
expectation that new constraints will form in the poly-
carbonate after necking, which we can associate with
the linear component characterized by Ge and becom-
ing active at �0. Recently, Stachurski24 further ex-
plored the concept of the evolution of constraints as-
sociated with the glass transition by computer simu-
lation with Voronoi tessellation. Molecular chains pass
through constriction points associated with locally
high density, at which the chain mobility is highly
limited (and far from freely jointed). Plastic behavior
is associated with the tension in the chain becoming
large enough for it to be pulled through the constric-
tion point.23,25 These ideas lead us to propose that the
observed linear component arises from a network of
constriction points that form upon reversion to the
glassy state. Further theoretical work is required to
determine whether our observed value of Ge is consis-
tent with this picture.

The parameter V in Table II corresponds, on aver-
age, to v � 2.5 nm3. This is comparable with the value
of 6.4 nm3 recorded by Haward and Thackray.18 Bau-
wens-Crowet et al.26 reported experimental data
equivalent to a value of 3.4 nm3. Spathis and Kontou12

deduced from measurements of polycarbonate sepa-
rate pressure and shear activation volumes (vp and vs,
respectively). For our uniaxial tensile tests, v as de-

Figure 13 Stress–strain behavior (a) for stretching at a
strain rate of 8.75 � 10�5 s�1, modeled with the model of
Figure 6 for cooling at 2.5 � 10�2 °Cs�1. (b) Stress-stain
behaviour for stretching at a strain rate 4.08 � 10�5 s�1,
modelled using the model of Figure 6 for cooling at 1.167 �
10�2 °Cs�1. (c) Stress-strain behaviour for stretching at a
strain rate 5.86 x 10�6 s�1, modelled using the model of
Figure 6 for cooling at 1.67 � 10�3 °Cs�1.
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fined in our model is equal to 1⁄3vp � vs, for which their
data give a figure of 1.7 nm3. These examples show a
degree of consistency between our values and those of
other workers.

For the prediction of anisothermal stress relaxation,
eq. (12) proves more effective than the constitutive
model. The process of using eq. (12) involves the fit-
ting of relaxation curves to eq. (1). The values of the
parameters A and c thus derived vary far less with
temperature than the parameter � in the constitutive
model, and so interpolation for values at intermediate
temperatures poses less of a problem. The different
quality of the prediction may, therefore, in part reflect
numerical effects. However, the two models are essen-
tially different. If we assume (as is the case for �
� 2.08) that the stress in the constitutive model is that
in the series model that constitutes the lower arm of
Figure 6, then we can arrive at an expression for the
rate of stress decay. For �p, we can approximate eq. (9)
for a large argument by

� �
1
V ln�2�̇p

��p
� (13)

to give the total stress (�). � is also equal to that in the
series network, which can be approximated for large
�g values by

� � Gv�g
2 (14)

It now becomes possible to use eq. (10) in eq. (14)
and thence to derive expressions for �p and �̇p in terms
of � and �̇. The substitution and rearrangement of eq.
(13) then give an expression for the decay rate of
stress:

�̇ � �
��exp�V��

�Gv
(15)

From this, it is clear that, as the stress increases, the
absolute value of its rate of decay does as well. As in
most viscoelastic systems, including linear viscoelas-
ticity, stress relaxation is driven by the level of stress.
This in contrast to eq. (12), which is based on the
premise that the rate of relaxation of stress depends
only on the temperature and the time after loading.
Now consider a specimen in stress relaxation that has
cooled to a temperature T. The stress will be lower
than that for a specimen that has been relaxing for the
same time at a constant temperature T. Therefore,
according to eq. (15), the rate of stress decay will be
lower for the cooling specimen, whereas according to
eq. (12), the decay rates will be the same. Therefore,
our constitutive model of Figure 6 will predict higher
stresses than eq. (12). A comparison of the numerical
results in Figures 11 and 12 shows that they conform

to this expectation. A model based on the Eyring
process could be constructed to have the same tem-
perature/stress-relaxation characteristic as eq. (12) if
we could ensure that only a (temperature-dependent)
fraction of the total stress was relaxing. This could be
done by the addition of a permanent elastic, or more
slowly relaxing, process in parallel to the model in
Figure 6. Such a model would make improved predic-
tions of stress relaxation, but the added parallel pro-
cess would need to be highly temperature-dependent,
and this would lead to more complex behavior for
anisothermal stretching. If the added process were
elastic, it would need to increase in stiffness during
cooling, and this would result in a stress–strain curve
with increasing slope, in contrast to the observations
in Figure 13. A more complex model along these lines
might be worthy of future study.

In contrast to stress relaxation, the anisothermal
stress–strain behavior, as shown in Figure 13, is un-
derpredicted by the constitutive model. It is significant
that the stress relaxations are at the extension ratio of
2.08, and so the model does not include the effects of
the parallel elastic network parameter Ge, whereas the
stress–strain curves are at a higher strain. The charac-
teristic of underprediction is also apparent in the mod-
eling of isothermal stress–strain curves, as shown in
Figures 4 and 9, but not in the modeling of isothermal
stress relaxation, as shown in Figure 8. Thus, there is a
level of consistency between the isothermal and aniso-
thermal performances of the model.

CONCLUSIONS

We have produced experimental data on the tensile
stress–strain behavior of necked and necking polycar-
bonate at elevated temperatures below the glass tran-
sition, under both constant and falling temperature
conditions. A nonlinear constitutive model has been
developed that incorporates an Eyring process and an
elastic network, with the latter becoming effective
only in the postnecking regimen. We have adopted the
concept, introduced by previous workers, of a glass–
rubber–glass transition as a possible mechanism for
the origin of this delayed elastic component. Stress-
relaxation and stress–strain experiments have been
used to verify the model. Anisothermal experiments
are predicted with less accuracy than isothermal ones,
but the accuracy is still at a useful level. In addition, an
empirical integral relation has been shown to be capa-
ble of deriving anisothermal stress-relaxation curves
from isothermal curves.
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